Nasal floor elevation combined with dental implant placement

Ziv Mazor, DMD *
Adi Lorean, DMD**
Eitan Mijiritsky †
Liran Levin, DMD ‡

*Private Practice, Ra’anana, Israel
**Private Practice, Tiberius, Israel
†Private Practice, Tel-Aviv, Israel
‡Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel

Short title: Nasal floor elevation

No. of Figures: 6 No. of Tables: 0

Correspondence and reprint requests to:
Dr. Liran Levin,
Department of Periodontology,
School of Graduate Dentistry,
Rambam Health Care Campus, Haifa, Israel
Fax: +972-4-85431717; E-mail: liranl@tx.technion.ac.il

Summary of key findings: Nasal floor elevation might serve as a predictable procedure which allows implant placement in areas with significant atrophy together with increased implant stability due to the bicortical support.
Abstract

Objectives: The aim of the present study was to report on the survival of dental implants placed in conjunction with nasal floor elevation.

Methods: A retrospective cohort of 32 consecutive patients from two private practices was evaluated. All patients presented with alveolar bone height deficiency in the anterior region which was not sufficient to place a dental implant according to a CT scan preformed prior to implantation. Elevation and augmentation of the nasal mucosa was performed simultaneously with dental implant placement. Data collection included demographic information, as well as records of the pre-operative available bone height, implant dimensions, bone addition following nasal floor augmentation and survival of the implants at last follow-up.

Results: Overall, 32 patients received 100 implants that were performed in conjunction with nasal floor elevation. The average pre-operative available bone height according to a CT scan that was preformed prior to implantation was 9.1±0.9mm and ranged from 7.3 to 11.2mm. Bone addition following nasal floor augmentation was 3.4±0.9mm and ranged between 1.1 and 5.7mm. The mean follow up time was 27.8±12.4 months and during that follow-up period, no implant failure was recorded, resulting a 100 percent implant survival.

Conclusion: Nasal floor elevation might serve as a predictable procedure which allows implant placement in areas with significant atrophy together with increased implant stability due to the bicortical support.

Keywords: bone augmentation, success, survival, alveolar bone, dental implantation, anterior teeth, maxilla
Introduction

Over the past few decades, the use of osseointegrated implants as a foundation for prosthetic replacement of missing teeth has become highly predictable and successful.1-5 In the anterior region particularly, to replace a missing single maxillary tooth with a dental implant is a challenge because of the high aesthetic, functional and biological demands.3,6,7 In the anterior maxilla, the alveolar ridge dimensions influence implant location, position of the lip, and the architecture of the free gingival margin.8,9 Insertion of an endosseous implant requires sufficient bone volume for complete bone coverage. Additionally, the pattern of ridge resorption contributes to an unfavorable maxillo-mandibular relationship, requires angulations of the implants and/or angled abutments, and affects the proximity of adjacent facial concavities (maxillary sinus, nasal cavity) and vital structures (mandibular nerve).10 Bone resorption after tooth loss is usually dramatic and irreversible and more prominent in the first year.11,12 Resorption can be vertical or horizontal, leaving the area without bone and thus difficult to place implants.12 In the anterior maxillary region, nasal floor elevation could serve as an option for bone augmentation in order to enable dental implant placement.14 The information on the literature regarding this procedure and the predictability of dental implant placed in conjunction with nasal floor elevation is rather scarce.

The aim of the present study was to report on the survival of dental implants placed in conjunction with nasal floor elevation.
Methods

A retrospective cohort of 32 consecutive patients from two private practices was evaluated. All patients presented with alveolar bone height deficiency in the anterior region which was not sufficient to place a dental implant according to a CT scan preformed prior to implantation. The treatment protocol included full thickness incision on the crest of the anterior maxillary ridge followed by full exposure of the nasal spine and the inferior and lateral pyriform rim (Figure 1). Elevation of the nasal mucosa was carefully performed with the use of angulated curette, according to the anatomical shape of the pyriform rim (Figure 2). The elevated nasal cavity was then filled with bovine bone material* (Figure 3). Care was taken not to exceed a height of 6mm unless the inferior concha was removed. Implants† were inserted simultaneously during the same procedure (Figure 4,5). No membrane barrier was used unless there was a tear of the nasal membrane.

Data collection included demographic information, as well as records of the pre-operative available bone height, implant dimensions, bone addition following nasal floor augmentation and survival of the implants at last follow-up. Data was evaluated using descriptive statistics.

* Cerabone, Botiss, Berlin, Germany
† Adin dental Implants, Alone Tavor, Israel
Results

Overall, 32 patients (18 males and 14 females) received 100 implants that were performed in conjunction with nasal floor elevation. Patients’ age ranged from 35 to 76 (average 56.4±9.9). Thirteen patients reported on smoking. The distribution of implants according to their position in the maxilla is presented in figure 6. The average pre-operative available bone height according to a CT scan that was preformed prior to implantation was 9.1±0.9mm and ranged from 7.3 to 11.2mm. The average implant length was 12.5±0.9mm (Range 10 to 16mm).

Bone addition following nasal floor augmentation was 3.4±0.9mm and ranged between1.1 and 5.7mm. The mean follow up time was 27.8±12.4 months and during that follow-up period, no implant failure was recorded, resulting a 100 percent implant survival.

Discussion

Placing implants in the anterior region represents a challenge for the clinician, mainly because of the high aesthetic and functional demands of this area.3,7 Providing the patient with a rapid predictable solution for tooth loss in the anterior region is of utmost important in those cases. According to our observations, panoramic view of this area might overestimate the available bone height since it reflects the height of the buccal plate at the nasal spine area. Thus, a CT scan should be recommended for implant planning in this region. Nasal floor elevation, as seen from the present results, might serve as a viable and predictable treatment method when bone height deficiency exists. Nevertheless, long-term follow-up is warranted in order to assess the behavior of the augmented bone in the nasal cavity over time.

One of the benefits that might explain the high survival rates of the implants placed with nasal floor elevation is the bi-cortical stabilization that is achieved when inserting the implant
through the alveolar bone crossing the cortical bone of the crest as well as the cortical bone of the nasal floor. This stabilization promotes implant integration even in cases with immediate provisionalization.

Grafting of the maxillary sinus is a method used to achieve sufficient bone height for posterior maxillary implant placement and has proved highly successful.15-20 Sinus floor augmentation procedures are routinely performed, although the function of the maxillary sinus is not fully understood. Nasal floor elevation is a very similar procedure and might be a preferred treatment modality in the appropriate cases. Possible complications for nasal floor elevation might include bleeding, swelling, pain, hematoma, graft infection by cross-contamination, implant displacement, rhinitis and sinusitis. As for our clinical experience, the procedure is not recommended in cases of recurrent epistaxis, previous septum repair, chronic recurrent rhinitis or chronic known allergy.

In conclusion, nasal floor elevation might serve as a predictable procedure which allows implant placement in areas with significant atrophy together with increased implant stability due to the bicortical support.

\textbf{Acknowledgment}

No funding was received for this study, and the authors report no conflicts of interest.
References

Figures:

Figure 1: Full thickness incision on the crest of the anterior maxillary ridge followed by full exposure of the nasal spine and the inferior and lateral pyriform rim.
Figure 2: Elevation of the nasal mucosa carefully performed with the use of angulated curette, according to the anatomical shape of the pyriform rim
Figure 3: The elevated nasal cavity is filled with bovine bone material
Figure 4: Implants were inserted simultaneously during the same procedure.
Figure 5: Panoramic view of the anterior maxillary area before (a) and following (b) nasal floor elevation combined with dental implant placement.

a.

b.
Figure 6: Distribution of implants according to their position in the maxilla.

- Central Incisor: 41%
- Lateral Incisor: 13%
- Canine: 46%